Merrylands Primary School \& Nursery Years 3 and 4 Maths Guide

Contents
How to use this guide I
Years 3 and 4 Methods and Objectives 2
Year 3 Curriculum Expectations and Big Ideas 8
Year 4 Curriculum Expectations and Big Ideas 9
New Vocabulary for Year 3 10
New Vocabulary for Year 4 10

How to use this guide

This is a guide for parents, carers and staff at Merrylands Primary School and Nursery. The purpose of this document is to allow everyone to see the different methods, models and images that are used to teach addition, subtraction, multiplication and division. This will allow parents and carers to help their children at home and will also ensure consistency in teaching at school.

Maths at Merrylands uses the principles of 'Concrete, Pictorial, Abstract' (CPA). Children start off using 'Concrete' resources, such as blocks and counters, which they can move and manipulate to represent calculations. They then move on to the 'Pictorial' stage where they may use or draw pictures to represent calculations. Finally, they move on to the 'Abstract' stage where they use numbers and symbols to show calculations.

Concrete methods and equipment will be used at some point in all year groups - using practical resources instead of abstract methods does not necessarily mean that a child is working below age-related expectations. Children may also use a variety of different methods to solve reasoning problems; again, this does not necessarily mean that they are working below the level expected for their age.

This guide is divided into three sections. The first section shows you the different objectives and methods that your child will encounter at school. In this section, each calculation type has been colour coded.

Addition methods are orange Subtraction methods are blue
Multiplication methods are green Division methods are yellow
Each method shows you the concrete, pictorial and abstract ways to use each method. Different problems may require different methods - if your child finds a question difficult, see if they can use a different method to solve the problem.

In the second section, you will find the National Curriculum objectives and the 'Big Ideas' for each year group. The Big Ideas are the key concepts that children need to understand in order to progress successfully. The National Curriculum objectives are what children need to achieve to be working at age-related expectations at the end of each year.

In the third section, you will find the new mathematical vocabulary that your child will encounter this year; this will build on the new words introduced and used in previous years.

Years 3 and 4 Methods and Objectives

Objective and Strategies	Concrete	Pictorial	Abstract
	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to $0000^{4 \times 2=8}$ find $0000^{4 \times 2=8}$ commutat $2 \times 4-8$ ive $00^{2 \times 4=8}$ multiplicatio $00^{2 \times 8}$ n sentences. 000 $4 \times 2=8$	Use an array to write multiplication sentences and reinforce repeated addition.
Arraysshowing commutative multiplication		Link arrays to area of	$\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Objective and Strategies		Concrete	Pictorial

Objective and Strategies	Concrete	Pictorial	Abstract
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{cc} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r. $29 \div 8=3$ REMAINDER $\uparrow \uparrow \uparrow$ dividend divisor quotient

Year 3 Curriculum Expectations and Big Ideas

End of Year 3 Expectations
 Big Ideas

Pupils should be taught to:

- count from 0 in multiples of $4,8,50$ and 100
- work out if a given number is greater or less than 10 or 100
- recognise the place value of each digit in a 3-digit number (hundreds, tens, and ones)
- solve number problems and practical problems involving these ideas
- add and subtract numbers mentally, including:
- a 3-digit number and ones
- a 3-digit number and tens
- a 3-digit number and hundreds
- add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction
- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including 2 -digit numbers times I-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects
- The value of a digit is determined by its position in a number.
- Place value is based on unitising, treating a group of things as one 'unit'. This generalises to 3 units +2 units $=5$ units (where the units are the same size).
- Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20. For example, given $8+7$, thinking of 7 as $2+5$, and adding the 2 and 8 to make 10 , then the 5 to 15 . This should then be applied when calculating with larger numbers.
- Subtraction bonds can be thought of in terms of addition: for example, in answering $15-8$, thinking what needs to be added to 8 to make I5. Counting on for subtraction is a useful strategy that can also be applied to larger numbers.
- It is important for children not just to be able to chant their multiplication tables but also to understand what the facts in them mean, to be able to use these facts to figure out others and to use in problems. It is also important for children to be able to link facts within the tables (e.g. $5 \times$ is half of $10 \times$).
- They understand what multiplication means, see division as both grouping and sharing, and see division as the inverse of multiplication.

Year 4 Curriculum Expectations and Big Ideas

End of Year 4 Expectations Big Ideas

Pupils should be taught to:

- count in multiples of $6,7,9,25$ and 1000
- order and compare numbers beyond 1000
- count backwards through 0 to include negative numbers
- round any number to the nearest 10,100 or 1000
- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- solve addition and subtraction two-step problems in context, deciding which operations and methods to use and why
- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and I ; dividing by I ; multiplying together three numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply 2 -digit and 3 -digit numbers by a I-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply 2 -digit numbers by I digit, integer scaling problems and harder
- correspondence problems such as n objects are connected to m objects
- Imagining the position of numbers on a horizontal number line helps us to order them: the number to the right on a number line is the larger number. So 5 is greater than 4 , as 5 is to the right of 4 . But -4 is greater than -5 as -4 is to the right of -5 .
- Rounding numbers in context may mean rounding up or down. Buying packets of ten cakes, we might round up to the nearest ten to make sure everyone gets a cake.
- Estimating the number of chairs in a room for a large number of people we might round down to estimate the number of chairs to make sure there are enough.
- We can think of place value in additive terms: 456 is $400+50+6$, or in multiplicative terms: one hundred is ten times as large as ten
- It helps to round numbers before carrying out a calculation to get a sense of the size of the answer. For example, $4786-2135$ is close to $5000-2000$, so the answer will be around 3000. Looking at the numbers in a calculation and their relationship to each other can help make calculating easier. For example, 3012 2996. Noticing that the numbers are close to each other might mean this is more easily calculated by thinking about subtraction as difference.
- It is important for children not just to be able to chant their multiplication tables but to understand what the facts in them mean, to be able to use these facts to figure out others and to use them in problems.
- It is also important for children to be able to link facts within the tables (e.g. $5 \times$ is half of $10 \times$).
- They understand what multiplication means and see division as both grouping and sharing, and to see division as the inverse of multiplication.
- The distributive law can be used to partition numbers in different ways to create equivalent calculations. For example, $4 \times 27=4 \times(25+2)=(4 \times 25)+(4 \times 2)=$ 108.
- Looking for equivalent calculations can make calculating easier. For example, $98 \times$ 5 is equivalent to $98 \times 10 \div 2$ or to $(100 \times 5)-(2 \times 5)$. The array model can help show equivalences.

New Vocabulary for Year 3

Number and place value	Addition and subtraction	Multiplication and division	Fractions
Numbers to one thousand	Column addition and subtraction	Product	Numerator, denominator
		Multiples of four, eight, fifty and one hundred	Unit fraction, non-unit fraction
Scale up	Compare and order		

New Vocabulary for Year 4

Number and place value	Multiplication and division	Fractions and decimals
Tenths, hundredths Decimal (places) Round (to nearest) Thousand more/less than Negative integers Multiplication facts (up to I2xI2)	Equivalent decimals and fractions	
Count through zero	Inverse	
Roman numerals (I to C)	Derive	

